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Earth evolution and dynamics—a tribute to Kevin Burke1

Trond H. Torsvik, Bernhard Steinberger, Lewis D. Ashwal, Pavel V. Doubrovine, and Reidar G. Trønnes

Abstract: Kevin Burke’s original and thought-provoking contributions have been published steadily for the past 60 years, and
more than a decade ago he set out to resolve how plate tectonics and mantle plumes interact by proposing a simple conceptual
model, which we will refer to as the Burkian Earth. On the Burkian Earth, mantle plumes take us from the deepest mantle to
sub-lithospheric depths, where partial melting occurs, and to the surface, where hotspot lavas erupt today, and where large
igneous provinces and kimberlites have erupted episodically in the past. The arrival of a plume head contributes to continental
break-up and punctuates plate tectonics by creating and modifying plate boundaries. Conversely, plate tectonics makes an
essential contribution to the mantle through subduction. Slabs restore mass to the lowermost mantle and are the triggering
mechanism for plumes that rise from the margins of the two large-scale low shear-wave velocity structures in the lowermost
mantle, which Burke christened TUZO and JASON. Situated just above the core–mantle boundary, beneath Africa and the Pacific,
these are stable and antipodal thermochemical piles, which Burke reasons represent the immediate after-effect of the moon-
forming event and the final magma ocean crystallization.

Résumé : Les contributions originales et inspirantes de Kevin Burke ont été publiées de manière régulière au cours des soixante
dernières années et, il y a plus d’une décennie, il s’est mis à résoudre l’interaction entre la tectonique des plaques et les panaches
du manteau; il a proposé un modèle conceptuel simple, auquel nous référerons en tant que la « Terre burkienne ». Sur cette Terre
burkienne, les panaches du manteau partent des plus grandes profondeurs du manteau jusqu’à des niveaux sous-
lithosphériques, où il y a fusion partielle, et jusqu’à la surface où des laves de points chauds font éruption encore de nos jours
et où de grandes provinces ignées et des kimberlites ont fait éruption de manière épisodique par le passé. L’arrivée d’une tête de
panache contribue au morcellement du continent et pénètre les plaques tectoniques, créant et modifiant les limites des plaques.
Réciproquement, la tectonique des plaques contribue de manière essentielle au manteau par subduction. Les dalles redonnent
de la masse au manteau basal et elles déclenchent un mécanisme selon lequel des panaches s’élèvent des bordures de deux
structures, à grande échelle et à basse vitesse d’onde de cisaillement dans la partie la plus basale du manteau, que M. Burke a
nommées TUZO et JASON. Situées tout juste au-dessus de la limite entre le noyau et le manteau, sous l’Afrique et le Pacifique, ces
structures sont des empilements thermochimiques antipodales stables, qui, selon M. Burke, représenteraient l’effet résiduel
immédiat de la formation de la lune et de la cristallisation finale de l’océan de magma. [Traduit par la Rédaction]

Introduction
Kevin Burke’s fundamental and enduring contribution to the

Earth Sciences is the scholarly analysis of the extent to which the
tectonics of the present-day Earth can be applied to the history of
the planet. Burke defines tectonics as “the large scale evolution
of planetary lithospheres”, and the hypothesis he has evaluated
throughout his career is that plate tectonics has been the dominant
terrestrial heat-loss mechanism throughout geologic time.

Burke coined the term Wilson Cycle (in Dewey and Burke 1974)
for the sequence of continental rifting, ocean opening, subduction
and ocean closure, and final continent–continent collision (Wilson
1966). He quickly recognized that the continents would hold the
record of plate interaction in deep time and in the early 1970s in
collaboration with John Dewey, he wrote a series of papers (e.g.,
Burke and Dewey 1973; Dewey and Burke 1973, 1974) that fundamen-
tally changed the way we think about the formation of continental

lithosphere in general and Precambrian lithosphere in particular.
Burke was a pioneer in suggesting that Precambrian orogens like the
Grenville are the eroded products of Himalayan-style collisions. He
also proposed in the 1970s (e.g., Burke et al. 1976) that greenstone
belts, present in nearly all Archean regions, are volcano-sedimentary
packages originally formed as marginal basins, ocean islands, and
arcs that were later thrust onto older continents. Burke also spent a
large part of his career working on the geology of the Caribbean (e.g.,
Burke et al. 1984) and Africa (e.g., Burke et al. 2003), but here we focus
on his more recent visions on how large igneous provinces (LIPs) at
the Earth’s surface may have originated as plumes from the edges of
the seismically slower and stable parts of the deepest mantle.

Since 1953, Burke has had numerous teaching and lecturing posi-
tions in several continents, but perhaps his most important position
was as professor and chairman of the Geology Department at SUNY
Albany (1973–1982). The Department that he put together and the

Received 30 November 2015. Accepted 15 February 2016.

Paper handled by Editor Ali Polat.

T.H. Torsvik. Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway; Geodynamics, Geological Survey of Norway
(NGU), N-7491 Trondheim, Norway; School of Geosciences, University of Witwatersrand (WITS), Johannesburg 2050, South Africa.
B. Steinberger. German Research Centre for Geosciences (GFZ), 14473 Potsdam, Germany; Centre for Earth Evolution and Dynamics (CEED), University
of Oslo, 0316 Oslo, Norway.
L.D. Ashwal. School of Geosciences, University of Witwatersrand (WITS), Johannesburg 2050, South Africa.
P.V. Doubrovine. Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway.
R.G. Trønnes. Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0316 Oslo, Norway; Natural History Museum, University of Oslo,
0318 Oslo, Norway.
Corresponding author: Trond H. Torsvik (email: t.h.torsvik@geo.uio.no).
1This paper is part of a special issue that honors the careers of Kevin C. Burke and John F. Dewey.

1073

Can. J. Earth Sci. 53: 1073–1087 (2016) dx.doi.org/10.1139/cjes-2015-0228 Published at www.nrcresearchpress.com/cjes on 22 February 2016.

C
an

. J
. E

ar
th

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

U
N

A
M

 P
E

8 
on

 0
2/

15
/1

8
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 

mailto:t.h.torsvik@geo.uio.no
http://dx.doi.org/10.1139/cjes-2015-0228


science that emerged in that period had a profound influence on the
evolution of geological thought.

Burke’s presence at scientific meetings is legendary. Many of us
have watched Burke sit in the front row of a session and proceed
to stimulate the often-reticent audience into animated discussion.
In addition, he never allows a missing speaker to derail a good
session and he has occupied many unscheduled vacancies by de-
livering his own ideas and questions and encouraging discussions.

Hotspots and mantle plumes
Tuzo Wilson at the University of Toronto suggested in 1963 that

linear chains of seamounts and volcanoes—which display an age
progression—are caused by relatively small areas of melting in
the mantle, termed hotspots (Wilson 1963). Jason Morgan later pro-
posed that hotspots may be caused by mantle plumes up-welling
from the lower mantle and constructed the first hotspot reference
frame in 1971 (Morgan 1971). Burke met and worked with Wilson in
the early 1970s, a turning point in his career. Together they pub-
lished four papers in Nature (Burke and Wilson 1972; Wilson and
Burke 1972; Burke et al. 1973a, 1973b) and later a review paper on
Hotspots on the Earth’s surface in Scientific American (Burke and Wilson
1976). Hotspots are commonly referred to as volcanism unrelated to
plate boundaries and rifts. A few also lie at the ends of volcano chains
connected to LIPs, e.g., the Tristan (Paraná–Etendeka) and Reunion
(Deccan) hotspots. The Hawaiian hotspot may also have been linked
to a now subducted LIP, whilst the New England hotspot lies at the
end of a trail that was connected with Jurassic kimberlite volcanism
in continental North–East America (Zurevinski et al. 2011). An excel-
lent summary describing the dynamic processes linking hotspots,
mantle plumes, and LIPs can be found in Duncan and Richards (1991).

In 2003, Burke enthusiastically arrived in Trondheim, Norway,
to share his latest visions on the origin of LIPs. Burke had plotted
reconstructed LIP eruption centres based on palaeogeographic maps
by Eldholm and Coffin (2000) and Scotese et al. (1987) on a seismic
shear-wave model map of Li and Romanowicz (1996; SAW12D), rep-
resenting the mantle velocity structure directly above the core–
mantle boundary (CMB). Here he had made the key observation that
most LIPs—when erupted—lay near the radial projections onto the
Earth’s surface of the margins of the low-velocity shear-wave regions
of the D== zone just above the CMB. His ideas were first published in
Burke and Torsvik (2004), who demonstrated that the majority of
reconstructed LIPs of the past 200 Myr plot within or overlay the
edges of two low-velocity regions near the CMB (Fig. 1a). These two
equatorial and antipodal regions—argued to be the most probable
sources of the mantle plumes that generated LIPs—were dubbed
sub-African and sub-Pacific regions, later large low shear-wave
velocity provinces (LLSVPs, Garnero et al. 2007), or simply TUZO and
JASON by Burke (2011). The pattern observed by Burke and Torsvik
(2004) implied that TUZO and JASON must have been fairly stable
in their present location at least since the eruption of the Central
Atlantic Igneous Province (marked C in Fig. 1a) near the Triassic–
Jurassic boundary.

Observations
Burke and Torsvik (2004) originally restored 25 LIPs of the past

200 Myr to their eruption sites, using a global palaeomagnetic
reference model, and they introduced the zero-longitude Africa
approach to constrain longitude semi-quantitatively from palaeo-
magnetic data. The largest uncertainty in their procedure arose in
reconstructing seven Cretaceous Pacific LIPs in the African palaeo-
magnetic frame using relative plate circuits. Nonetheless, the ma-
jority of LIPs—when erupted—lay above the edges of TUZO and
JASON (Fig. 1a). Clear exceptions, however, were the youngest and
smallest LIP, the Columbia River Basalt in the western United States
(ca. 15 Ma), the Maud Rise offshore East Antarctica (in that paper
thought to be 73 Ma), and the Manihiki Plateau.

In a follow-up paper, Torsvik et al. (2006) tested four different
plate motion reference frames (African fixed hotspot, African
moving hotspot, Global moving hotspot, and Global Palaeomag-
netic) to restore LIPs to their eruption sites. They also compared
the reconstructed positions of LIPs with several global tomography
models, mapped out the location of shear-wave velocity gradients
near the CMB, and pointed out that most restored LIPs overly a con-
tour of constant velocity that corresponds to the highest values of
the horizontal velocity gradient. That contour—1% slow contour in
the SMEAN model (Fig. 1b)—was dubbed the plume generation zone
(PGZ) by Burke in Burke et al. (2008). The 2006 model used a chain
of relative motion, which connects Africa and the Pacific via
East Antarctica–Australia–Lord Howe Rise for times between 46.3
and 83.5 Ma (plate circuit Model 2 of Steinberger et al. 2004). Prior to
that, the Pacific Ocean LIPs in the global moving hotspot frame were
restored with rotation rates derived from a less reliable fixed hotspot
frame back to 150 Ma. Reconstructions of LIPs in the 2004 and 2006
models differ in detail because of different plate motion frames.
Another key difference was the location of Maud Rise based on new
marine magnetic data that had become available, which showed that
the Maud Rise erupted close to 125 Ma, and not at 73 Ma. The revised
age placed the reconstructed Maud Rise (Fig. 1b) right on top of the
margin of TUZO (1% slow contour in SMEAN). The analyses of recon-
structed LIPs were also extended back to 251 Ma using the Siberian
Traps; it is noteworthy that the Siberian Traps either overlie a
smaller anomaly (� −0.5%) in the lower mantle (later named Perm in
Lekic et al. 2012; Fig. 2b) or a north-easterly arm of TUZO.

In 2010, reconstructions derived from a hotspot frame for the
past 100 Myr were combined with a revised palaeomagnetic frame
for older times (Torsvik et al. 2010), corrected for true polar wan-
der (TPW; Steinberger and Torsvik 2008) between 320 and 100 Ma.
This is known as the global hybrid frame (Torsvik et al. 2008a).
TPW is the rotation of the crust and mantle relative to the spin
axis. The paleomagnetic reconstructions reference the continents
(and embedded LIPs) to the Earth’s spin axis, and the deep mantle
structures (LLSVPs) rotate with respect to the spin axis during the
TPW events. Hence, in the correlative exercises illustrated in Figs. 1
and 2, the paleomagnetic reconstructions should be corrected for
TPW. Before 2008 we did not know how to do these corrections
quantitatively, but the net cumulative effect of TPW since the Late
Palaeozoic is at certain periods zero or otherwise small. Steinberger
and Torsvik (2008) showed that TPW over the past 320 Myr consists of
oscillations back and forth such that the pole never deviated by
more than �20° from its present position, and the pole was within
�5° of the present position for about half of the time. Also,
these oscillations occurred around an axis close to the LLSVP centres
such that, regardless of whether the TPW rotations are considered or
not, LIPs remain close to LLSVP margins. By 2010, LIP reconstructions
were also extended back to the eruption of the Skagerrak-centred LIP
(297 Ma, Torsvik et al. 2008b) in northern Europe, dubbed SCLIP by
Burke, the master of acronyms. We also extended Burke’s ideas of
LIPs to kimberlites—igneous bodies thought to be caused by plumes
heating thick cratonic lithosphere but not resulting in the formation
of LIPs—and we demonstrated that more than 80% of all kimberlites
for the past 320 Myrs also were sourced by plumes from near the
edges of TUZO (Torsvik et al. 2010).

The correlation of reconstructed eruption sites of LIPs (Fig. 1)
and kimberlites, at least since about 320 Ma when Pangea formed,
indicates the long-term stability of TUZO and JASON. That remark-
able correlation between surface and mantle features—as first envi-
sioned by Burke in 2003—provides a novel way of reconstructing the
longitudinal position of continents. Assuming that TUZO and JASON
have remained nearly stationary before Pangea time, we can show
that a geologically reasonable palaeogeographic model that recon-
structs continents in latitude from palaeomagnetic data—and longi-
tude in such a way that LIPs and kimberlites are positioned above the
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edges of TUZO and JASON at eruption times—can be defined for the
entire Phanerozoic (Torsvik et al. 2014). We will refer to this proce-
dure as the plume generation zone reconstruction method. Figure 2a
shows 31 reconstructed LIPs from Neogene (15 Ma) to Late Cambrian
(510 Ma) times. Here we use a hybrid plate motion frame and only the
Columbia River Basalts overlie regions of faster than average veloci-
ties in the deep mantle. The Ontong Java, Manihiki and Hikurangi

LIPs were modelled as fragments of a single LIP (the Ontong Java Nui)
formed at around 123 Ma (Chandler et al. 2012), and the Wallaby
Plateau (originally 96 Myrs old) was assigned an age of 123 Ma after
Olierook et al. (2015). About 1700 kimberlites show a similar pattern
(Fig. 2b) as the LIPs (Fig. 2a), but Cretaceous–Tertiary kimberlites from
northwest America (as the Columbia River LIP) and Devonian kim-
berlites from Russia are notable exceptions that do not conform to

Fig. 1. (a) First published model of reconstructed large igneous provinces (LIPs, 201–15 Ma; Burke and Torsvik 2004) draped on the SMEAN
shear-wave tomography model of Becker and Boschi (2002). Reconstructed LIPs plot within—or overlay the edges of—low-velocity regions of
the D== zone. The Columbia River (CR, 15 Ma), Maud Ridge (MR, assigned 73 Ma in this paper but now assigned an age of 125 Ma), and Manihiki
Plateau (MP, 123 Ma) are exceptions in this diagram. The oldest reconstructed LIP in this diagram was the 201 Ma Central Atlantic Igneous
Province (marked C). (b) Follow-up LIP reconstructions by Torsvik et al. (2006) with revised age for Maud Ridge (MR, 125 Ma) and extended back
to 251 Ma (Siberian Traps, ST). In this paper the steepest gradients in the SMEAN tomography model were around the 1% slow contour (red
thick line) and dubbed FSB (faster/slower boundary). (a, b) are two different but closely similar palaeomagnetic reconstructions but in (c) we
show the first LIP reconstructions using a hybrid mantle frame (Torsvik et al. 2010; see text), and extended back to eruption of the Skagerrak
Centred LIP (SC). The 1% slow contour in (b) was dubbed the PGZ (plume generation zone) from 2008 and onwards (Burke et al. 2008). [Colour online.]
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this pattern. Figure 3 shows three examples of global plate recon-
struction from Late Triassic to Early Cretaceous times. Early Creta-
ceous kimberlites (Fig. 3a) are well known in South America – South
Africa – Australia – East Antarctica, and they are mostly located near
the margin of TUZO. Similarly, the reconstructed Maud Rise (125 Ma)
and Rajasthan (118 Ma) LIPs plot near the TUZO margin whilst On-
tong Java Nui (123 Ma) overlies the JASON margin. A similar pattern
emerges for the Late Jurassic (Fig. 3b) with North American, north-
west African, South African, and Australian kimberlites erupted over
the TUZO margin. Late Jurassic kimberlites from Siberia, however,
are not associated with the LLSVP margins (see also Heaman et al.
2015). Three Late Jurassic LIPs, Argo (155 Ma), Magellan (145 Ma), and
Shatsky (147 Ma)—the oldest known in-situ Oceanic LIPs—plot di-
rectly above the TUZO and JASON PGZs. The remarkable pattern of
LIPs and kimberlites erupted above the LLSVP margins is also evident
for the Late Triassic – Early Jurassic; at that time kimberlites and one

LIP (C, Central Atlantic Magmatic Province) erupted above the entire
length of the western margin of TUZO (Fig. 3c).

Geodynamic models
The conclusions obtained in papers of Burke and co-authors that

(i) plumes mainly form at the margins of LLSVPs, and that (ii) these
margins are approximately stable through time promoted a num-
ber of numerical modelling experiments to reproduce and explain
these features. Tan and Gurnis (2005) had already shown that if a
chemically dense basal layer also has a higher bulk modulus than the
surrounding mantle, it tends to form stable piles with steep edges.
Due to their proximity to the hot core, these piles, while being chem-
ically denser, are also hotter than the surrounding mantle and there-
fore nearly neutrally buoyant. In follow-up work, Tan et al. (2011)
showed that plumes tend to form preferentially, but not exclusively,
forming along the steep margins of such piles. Moreover, the plumes

Fig. 2. (a) Up-to-date reconstruction of all Phanerozoic large igneous provinces (LIPs, 15–510 Ma) using a hybrid reference frame (updated
from Fig. 1c) and draped on the s10mean tomographic model of Doubrovine et al. (2016). The plume generation zone (PGZ) in this model
corresponds to the 0.9% slow contour. LIPs with red-squared symbols are reconstructed with moving and fixed hotspot reference frames,
whilst those with green-squared symbols use a true polar wander corrected reference frame/plume generation zone method (see text). LIP
numbers (ages in Ma) are as follows: 15, Columbia River; 31, East African; 62, North Atlantic Igneous Province; 65, Deccan; 73, S. Leone Rise;
87, Madagascar; 95, Broken Ridge; 99, Hess Ridge; 100, Central Kerguelen; 100, Agulhas Plateau; 111, Nauru; 114, South Kerguelen; 118,
Rajhmahal; 123, Ontong Java Nui; 124, Wallaby Plateau; 125, Maud Rise; 132, Bunbury; 134, Parana-Etendeka; 136, Gascoyne; 145, Magellan Rise;
147, Shatsky Rise; 155, Argo Margin; 182, Karroo; 200, Central Atlantic Magmatic Province; 251, Siberian Traps; 260, Emeishan; 285, Panjal
Traps/Tethyan Plume; 297, Skagerrak Centred LIP (SCLIP); 360, Yakutsk; 400, Altay-Sayan; 510, Kalkarindji. (b) One thousand seven hundred
and seventy-three phanerozoic kimberlites reconstructed as for the LIPs in (a) but here draped on seismic voting-map contours in the lower
mantle (Lekic et al. 2012). In this model five contours (only three shown on diagram) define the large low shear-wave velocity provinces
(LLSVPs) and count 0 (blue) denotes faster regions in the lower mantle. Note that this seismic map is derived from cluster analysis between
1000 and 2800 km depth; similarity of the maps in (a) and (b) therefore suggests that most of the lower mantle above the LLSVPs is warmer
than the average mantle. The s10mean zero contour in (a) is shown for comparison (white lines). Blue kimberlite symbols are those that are
anomalous by overlying the faster regions of the lower mantle. [Colour online.]
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from the margins, carrying material from near the hot CMB to the
surface, tend to have higher temperatures than those (fewer ones)
forming at the tops of the piles. The mechanism invoked by Tan et al.
(2011) to explain the “plumes from the margins” pattern is that sub-
ducted slabs “shape” thermochemical piles, but also push plumes
towards the edges of these piles, where they remain. Tan et al. (2011)
were interested in the long-term evolution over billions of years,
and therefore they did not prescribe subduction zone locations, as
these are not known for such long timescales. In a complementary
approach, Steinberger and Torsvik (2012) prescribed subduc-
tion zone locations, but initiated their calculation at 300 Ma, as no
earlier subduction zone locations were available. In their model,

plumes almost exclusively form at the margins of thermo-chemical
piles, as slabs push both the basal chemical layer and hot material
from the thermal boundary layer. In this way, hot piles of chemically
distinct material are formed, and, as more hot material is pushed
against their margins, it is forced to rise, forming mantle plumes.
However, it can be suspected that the clear pattern found is partly a
result of the relatively recent initiation of the model at 300 Ma. To
test that, Steinberger and Torsvik (2012) re-initialized a model start-
ing from the present-day structure and again imposing 300 Myr of
subduction history. The resulting pattern then becomes less clear:
Plumes are now also overlying pile interiors, but they still initially
form mainly, but not exclusively, along their margins. Beyond this

Fig. 3. Examples of global plate reconstructions (same reference frame as in Fig. 2) and the distribution of kimberlites (stars) and large
igneous provinces (LIPs, squares). Kimberlites with blue-coloured stars are somewhat anomalous. LIP number are ages in million years and
acronyms are as follows: A, Argo Plateau; C, Central Atlantic Magmatic Province; MR, Maud Rise; M, Magellan Rise; O, Ontong Java Nui;
R, Rajmahal; S, Shatsky Rise. Reconstructions are draped on the s10mean tomography model (Doubrovine et al. 2016) together with the
0.9% slow contour (the plume generation zone, PGZ). [Colour online.]
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general pattern, Gaßmöller (2014) showed statistically significant
correlations between modelled and actual mantle plume eruption
sites. Similar results were also obtained by Hassan et al. (2015).

These and many other numerical models have in common that
they assume a Newtonian viscous rheology for the mantle, whereby
viscosity depends on pressure, and depth, and often also on temper-
ature. This is a convenient assumption to keep the model relatively
simple and tractable, but, at least for the lower mantle, a Newtonian
rheology is also supported by experiments and observations. Karato
and Li (1992) expected that diffusion creep should be the dominant
deformation mechanism in lower-mantle bridgmanite. This is also
supported by the fact that seismic anisotropy, which would be ex-
pected if the alternative dislocation creep mechanism is dominant, is
largely absent in the lower mantle, except at the base of the mantle
near the edges of TUZO and the smaller Perm anomaly (Ford et al.
2015; Long and Lynner 2015). Hence the numerical models are char-
acterized by large-scale flow in the lower mantle: Sinking slabs and
rising plumes supply the main driving forces, but they are also part
of large convection cells. Accordingly, it can be expected that plumes
get advected by this large-scale flow and become tilted and distorted
(Steinberger and O’Connell 1998) unless they are located at positions
of large-scale upwelling (Zhong et al. 2000).

However, the existence of such large-scale flow was never ac-
cepted by Burke. In his view of the lower mantle (at least at depths
where the influence of plate motions has ceased) only slabs sink
and plumes rise vertically from the edges of thermo-chemical piles,
accompanied by horizontal flow along the CMB to satisfy mass con-
servation. Interestingly, French and Romanowicz (2015) showed in
their tomography model that plumes are almost vertical below
depths of about 1000 km. They take this as an indication that—apart
from the plumes themselves—lower-mantle flow may be rather slug-
gish. Alternatively, it may be an indication that the observed plumes
occur at stagnation points of large-scale flow, as suggested by Zhong
et al. (2000).

What could be the reason for the absence, as envisioned by
Burke, of large-scale flow, predicted by numerical models? A con-
centration of deformation to zones of sinking slabs and rising
plumes could be facilitated if the (effective) viscosity is strongly
reduced in their vicinity. For slabs, this is contrary to expectation, as
they are colder, hence expected to be more viscous, and coupled to
and inducing flow in the surrounding mantle. Viscosity reduction
could occur for non-linear stress-dependent rheology. But also in the
case of Newtonian viscosity, it could be possible, if it strongly de-
pends on grain size, and if the passage of slabs through the 660 km
discontinuity is accompanied by grain size reduction. Such a grain
size reduction accompanied by viscosity reduction has been pro-
posed by Karato and Li (1992). Solomatov and Reese (2008) have ex-
plored the effect of grain size-dependent viscosity on large-scale
convection. Their fig. 9 shows that low-viscosity slabs can still dis-
place the chemical piles laterally and lead to strong heterogeneity in
the mantle. Another effect that may lead to shear localization near
subducted slabs would be a strong viscosity contrast between lower-
mantle constituents, bridgmanite and magnesiowüstite (Girard et al.
2016), if, under the stronger stresses surrounding slabs, the weak
phase gets connected, whereas elsewhere the strong phase is inter-
connected. But until now, no numerical models of the mantle exist
that would show the characteristics proposed by Burke. Also, whole-
mantle large-scale flow models have been very successful in explain-
ing a number of observations, in particular the geoid (Hager and
Richards 1989). Geoid highs above nearly neutrally buoyant LLSVPs
can result from a hotter than average mantle above them to depths
of about 1000 km (Figs. 2b, 4c) causing upward flow and surface
deflection (dynamic topography). Before replacing these models, we
should ascertain that proposed alternatives can also explain these
observations. At the moment, it is not clear whether Burke is right
with his intuition, or rather the views prevalent in the numerical
modelling community are correct. The door is wide open for further
discoveries and, regardless of the final verdict, Burke will certainly

be acknowledged for provoking thought and challenging widely-
held opinions.

Likewise, it is not clear what could be the reasons for thermo-
chemical piles being stable for 300 Myr and perhaps even longer
(Torsvik et al. 2014). In numerical models, it is certainly possible
to maintain such piles throughout Earth history: Tan et al. (2011)
showed that thermo-chemical piles with higher density and bulk
modulus than surrounding mantle could survive for billions of
years. Mulyukova et al. (2015a) showed that even without different
bulk modulus, due to mechanical stirring, almost neutrally buoyant
piles, which hence feature high topography, emerge for a wide range
of parameters. With a balance between replenishment (by segre-
gation of oceanic crust material) and destruction (by entrainment
in plumes) such piles can survive for billions of years. But in
contrast to their stability in time, these piles tend to be mobile in
space. Tan et al. (2011) found that a segment of a pile edge can be
stationary for 200 million years, while other segments have rapid
lateral movement. Also, in the models of Mulyukova et al. (2015a)
despite prescribed, fixed subduction zone locations, pile shapes are
quite variable through time. However, using models of subduction
history, it can be shown that piles form at similar locations as the
LLSVPs. McNamara and Zhong (2005) found that imposing 119 Myr of
subduction history tends to focus dense material into a ridge-like pile
beneath Africa and a more rounded pile beneath the Pacific. A time-
span of 119 Myr, however, is too short to assess long-term stability in
space. Subsequently, using a model of 300 Myr subduction history
based on plate reconstructions, Steinberger and Torsvik (2012) found
that locations of piles, once they are formed, are quite stable. In
particular, if a model is re-initiated from the present-day structure,
the pile edges typically move less than 1000 km during 300 Myr of
subduction. Bower et al. (2013) used a mantle model setup similar to
Tan et al. (2011) but with prescribed surface velocity boundary condi-
tions for the past 250 Myrs, leading to subduction zone locations
similar to Steinberger and Torsvik (2012). They found that, with suit-
able parameters, thermochemical piles remain stable at the CMB
but deform readily in response to slabs, unless the pile viscosity is
100 times higher than for ambient mantle at the same temperature.
Hence, it appears compatible with numerical models that piles have
moved little since �300 Ma. One possible cause would be that they
already have been in similar locations as today at 300 Ma, given that
subduction zones have probably remained in the same overall
regions—mostly away from the piles—since then. It is also possi-
ble that the piles, and possible upwellings above them, are them-
selves controlling the large-scale structure of mantle flow, hence
where subduction occurs. One indication is the degree-two struc-
ture of plate tectonics, which reveals that underlying mantle up-
wellings have remained stable for the past 250 Myr in the regions
near the two LLSVPs, whereas the regions where most of subduc-
tion, and hence most downward flow occurred, have been shifting
around, mostly along the great-circle belt between the two LLSVPs
(Conrad et al. 2013). Alternatively, or additionally, it may be due to
piles being intrinsically more viscous.

Going further back in time, Zhang et al. (2010) used a crude
proxy subduction model (given that exact locations of subduction
zones prior to 300 Ma are not well known) back to the early Phanero-
zoic. They proposed an approximately degree-one initial structure
with only one pile beneath Panthalassa (proto-Pacific basin), because
most of the subduction associated with the Pangea assembly
occurred in the opposite hemisphere. In the Mesozoic, the structure
gradually changed to something closer to degree two and more sim-
ilar to what is observed today, with two separate piles beneath the
Pacific and Africa. This result was challenged by Bull et al. (2014), who
found that a configuration with only one pile (beneath the Pacific)
prior to Pangea assembly, would not evolve to a structure with two
piles, even until today. Hence they concluded that a structure similar
to the present-day probably existed already at 410 Myr. One reason
for this difference is that Bull et al. (2014) used a plate reconstruction,
constrained in longitude and corrected for TPW, as surface boundary
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condition, in contrast to the reconstruction of Zhang et al. (2010). The
volume of dense material in both studies were similar but Bull et al.
(2014) used a �1% higher density in their models and a slightly lower
internal heating within the mantle. The subject was reviewed by
Zhong and Liu (2016).

Mantle convection modelling and determination of mineral
physics parameters are still at exploratory stages. The potentially
very important discovery that the bridgmanite to post-bridgmanite
transition in the lower mantle causes a viscosity drop of 3–4 or-
ders of magnitude (Hunt et al. 2009; Ammann et al. 2010) needs to

be further explored by experimental and theoretical mineral physics
investigations and by convection modelling. Such a viscosity de-
crease would be most pronounced in the circumpolar high-velocity
belt under the Arctic, Asia, Australia, Antarctica, and the Americas
(Fig. 5). Seismic investigations of D== discontinuities have located the
presumed post-bridgmanite transition at 300–400 km and 200–
300 km above the CMB under Asia and North to Central America,
respectively (e.g., Lay 2015). Such a strong and abrupt viscosity de-
crease in sinking mantle dominated by cold subducted slab material
will ease the flow through the lowermost 300 km and promote the

Fig. 4. Planet Earth according to (a) Courtillot et al. (2003) with three types of hotspots: (1) Primary plumes from the deepest mantle,
(2) Secondary plumes originating from the base of the transition zone (above TUZO and JASON), and (3) Superficial Andersonian hotspots.
(b) Andersonian Earth with no communication between the upper and lower mantle and all hotspots being superficial (see text). (c) The
Burkian Earth, a degree-two Earth governed by the two antipodal TUZO and JASON thermochemical piles and with plumes derived from their
margins. Orange colour indicates that the area above them is warmer than the background mantle, and the thick dashed red-stippled lines
indicate that they tend to be overlain by positive geoid anomalies. LIPs, large igneous provinces, pBn, post-bridgmenite; PGZ, plume
generation zones; ULVZ, ultra-low velocity zones. [Colour online.]
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spreading of the material in a relatively thin layer above the CMB
(Fig. 6a). This will facilitate efficient heating and partial sinking of
dense and thin basaltic crustal slivers (�6.5 km, White and Klein
2014) in the peridotite-dominated flow towards the LLSVP margins. Li
et al. (2014) showed that the reduced viscosity allows cold slabs to
spread more easily and broadly along the CMB, but that the stability
and size of dense reservoirs is not substantially altered by weak post-
bridgmanite. Future models should also re-evaluate to what extent
slabs are able to trigger plumes along LLSVP margins in the presence
of weak post-bridgmanite.

In spite of early interpretations of post-bridgmanite lenses within
the northeast part of JASON (Lay et al. 2006), recent seismological
data from this and other areas are very uncertain. Although a possi-
ble combination of high Fe and low Al contents of the LLSVP material
might stabilize post-bridgmanite to higher temperatures and lower
pressures (Mohn and Trønnes 2015), the strongly positive dp/dT-slope
of the post-bridgmanite transition (e.g., Tateno et al. 2009) will gen-
erally tend to destabilize the mineral in hot LLSVP material. An ab-
sence of post-bridgmanite lenses in the hottest regions of the D==
zone, as seems likely at this stage, implies relatively high viscosity (in
spite of the high temperature, e.g., Ammann et al. 2010), which
would facilitate the stability of LLSVPs.

Compositional asymmetry of plumes and ultra-low
velocity zones

The observed semi-parallel Loa and Kea geochemical trends ex-
tending 40–70 km towards the northwest along the Hawaiian plume
track have been noted by several investigators (e.g., Abouchami et al.
2000; Huang 2011; Weis et al. 2011). The Kea trend volcanoes with

more depleted compositions lie northeast of the Loa trend volca-
noes, which face the LLSVP interior and are characterized by higher
proportions of recycled oceanic crust (ROC). Weis et al. (2011) sug-
gested that the plume zonation could originate by the merging of
two lateral D== flows: one towards the northeast on top of the LLSVP
surface and the other towards the southwest along the CMB towards
the JASON margin. The merging of two lateral flows into the vertical
Hawaiian conduit would then result in an asymmetrically zoned
plume with the Loa and Kea source materials in the southwest and
the northeast segments of the conduit, respectively. Farnetani and
Hofmann (2010) and Farnetani et al. (2012) performed fluid convec-
tion modelling of such a divided conduit. Similar chemical plume
asymmetry linked to the plume position relative to the nearest
LLSVP margin (Fig. 5) has also been documented for Galapagos
(Vidito et al. 2013), Samoa (Jackson et al. 2014), Marquesas and Tahiti/
Society (Huang et al. 2011; Payne et al. 2013), and Tristan (Hoernle
et al. 2015). The predominant enriched material on the LLSVP-sides
appears to be ROC, with a possible exception for Tristan.

The double-sided plume-root model (Fig. 6a) implies that a
reservoir of ROC forming the upper layer of the LLSVP must be
convectively eroded. The ROC stockpile forming the upper LLSVP
parts might be continuously replenished in relatively stagnant re-
gions between plumes simultaneously with erosion near plumes
rooted along the LLSVP margins. The average plume spacing along
the LLSVP margin (Fig. 5) is approximately 30°, corresponding to
�1800 km at the CMB. The flow focusing indicated in the figure is
unlikely to divide the entire continuous flow front from the circum-
polar belt between each of the plumes. Some of the lateral flow
towards the LLSVP margins between two neighbouring plumes is

Fig. 5. Seismic tomographic s10mean model (dVS%) at 2800 km depth (Doubrovine et al. 2016). The red line is the 0.9% slow contour (as in
Fig. 2a). The white-stippled line marks the central part of the high velocity circumpolar belt through the Arctic, Asia, Australia, Antarctica,
and the Americas. This belt is presumably the location of descending flow of cold mantle, dominated by subducted slab material. The broad
flow directions from the circumpolar belt towards the large low shear-wave velocity provinces (LLSVPs) margins are shown by larger arrows
with colour gradients illustrating the temperature increase. The location of 27 inferred deep-rooted plumes (primary, clearly resolved, and
somewhat resolved plumes in French and Romanowicz 2015) are marked by small circles and converging arrows indicating inferred directions
for the focused D== flow towards the plume roots. The six plumes marked with purple colour, yellow fill, and bold letters have documented
compositional asymmetry with higher proportion of recycled oceanic crust on the side towards the LLSVP. [Colour online.]
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therefore likely to rise onto the LLSVP surface and be incorporated
into the wide and slowly rising mantle column under the residual
geoid highs over TUZO and JASON (Fig. 6b). The dense layers and
slivers of basaltic composition from the CMB flow have high bulk
modulus, owing to the presence of �-stishovite (CaCl2-structured sil-
ica) and absence of ferropericlase (e.g., Trønnes 2010; Irifune and
Tsuchiya 2015). These ROC slivers may therefore become stagnant in
the slowly rising columns of hot mantle above the LLSVPs, and grad-
ually separate and sink to the LLSVP surface. Such an accumulation
may facilitate storage of ROC over time spans of up to about 2.2–
2.5 Ga for Samoa, Reunion, and parts of the Azores and up to 1.7–
2.2 Ga for Iceland, Hawaii, and other parts of the Azores (Pb-model
ages, Andersen et al. 2015).

The low viscosity associated with post-bridgmanite in the circum-
polar belt region and with strongly elevated temperatures next to
the core surface and close to the LLSVP margins will increase the
sinking efficiency of folded and disrupted slivers and layers of dense
basaltic crust, but it will also increase the vigour of convection, coun-
teracting sinking efficiency. A complete separation of basaltic and
peridotitic material is therefore unlikely (Li and McNamara 2013).
The basaltic layers, constituting 6%–7% of subducted slab material,
may be folded and stretched during deformation and temporary
stagnation in the uppermost lower mantle, and subsequently
sinking through the lower mantle, hindering full segregation. The
presence of scattered, thin (5–50 km thickness) ultra-low velocity

zones (ULVZs) preferentially located near the LLSVP margins and
in the root zones of plumes originating at the CMB is a key obser-
vation (e.g., Thorne and Garnero 2004; Lay 2015). The D== ray cov-
erage required for global mapping the ULVZ distribution is far
from complete, but combined evidence from several recent studies
(e.g., Thorne and Garnero 2004; Thorne et al. 2013; Cottaar and
Romanowicz 2012; French and Romanowicz 2015) indicates that
ULVZ occurrences are generally correlated with LLSVP margins and
the root zones of deep plumes. Although some suggestions about
possible dense and solid ULVZ material have been proposed (Mao
et al. 2006; Dobson and Brodholt 2005), seismologists have repeat-
edly favoured partially molten zones with melt fractions of 15%–30%.
Several recent studies of high pressure melting relations of peridot-
itic and basaltic compositions (Andrault et al. 2014; Pradhan
et al. 2015) have demonstrated that various basalt solidi are broadly
similar to the inferred CMB temperatures of about 3800 K and lower
than peridotite solidi of about 4200 K. A strong partitioning of Fe into
the partial melts at lowermost mantle conditions (Tateno et al 2014;
Pradhan et al. 2015) will make the partially molten regions denser
than the surrounding mantle, including the LLSVP material.

In Fig. 6, we envisage that ULVZs of partially molten basalt may
be replenished by partially molten basaltic slivers passing by in the
lower part of the lateral flow along the CMB. At the same time, minor
amounts of the partially molten ULVZ material may be entrained
into the plume flow in its narrow and fast-flowing root zone. Based

Fig. 6. Schematic sections from a circumpolar high VS-belt to a large low shear-wave velocity province (LLSVP, see text). [Colour online.]
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on their seismic tomography observations, French and Romanowicz
(2015) suggested the term necking zone for such narrow plume roots.
The sinking of partially molten ROC into the ULVZs, followed by
re-entrainment of partially molten basalt in the flow on the LLSVP
side, will likely promote the segregation of the basaltic material in
the lower part of the flow facing the LLSVP. An additional effect is
that the ULVZs may act as long-term reservoirs for ROC material,
explaining the old model ages of such plume components (e.g.,
Andersen et al. 2015).

A relatively strong confinement of ROC to the LLSVP side of
vertically rising plume conduits is expected to diminish as the plume
rises through the mantle. Although plume flow is laminar, we expect
some folding and deformation on the way towards the surface. The
regular compositional asymmetry predicted by the model has been
documented only for six of the plumes in Fig. 5. With further geo-
chemical data collection combined with compilation of existing
data, one might find similar asymmetry in other plumes. A number
of analytical and numerical models exist for the entrainment of a
chemical layer in plumes. The fluid dynamic models of Farnetani and
Hofmann (2010) and Farnetani et al. (2012) support the asymmetric
entrainment and confinement of ROC slivers on the LLSVP side of the
Hawaiian plume. Sleep (1988) devised a model where a plume rises
from a cusp of a thermal boundary layer. Because this model is sym-
metric, the entrainment of a thin filament of chemically different
material occurs in the centre of the plume. Zhong and Hager (2003)
formulated a high-resolution numerical model to examine the effi-
ciency of such entrainment, but their model is also axisymmetric.
The 2D and 3D numerical models of Jones et al. (2016) yield bilateral
asymmetry only for the cases in which the chemical buoyancy is
negligible. Otherwise, the dense material is preferentially entrained
in the conduit center. Preliminary modelling results by Mulyukova
et al. (2015b) indicate a variety of plumes where ROC—unless it had
already been accreted to the LLSVPs—is either well-mixed in the
plume or occurs on the side away from the piles, but never only on
the side towards the piles. We therefore caution that the scenario
sketched in Fig. 6 is presently a conceptual idea supported only by
some numerical models.

Origin and composition of the LLSVPs
The current resolution of mineral physics data (especially den-

sity and bulk and shear moduli) does not allow discrimination
between the two commonly invoked alternative LLSVP materials:
basaltic and Fe-rich peridotite. The age and mode of origin of such
thermochemical piles, however, can in principle be inferred from
an Earth evolutionary and geochemical perspective. Basaltic mate-
rial accumulation would probably occur over billions of years by
separation from subducted lithosphere. In contrast, the emplace-
ment of komatiitic or peridotitic material with elevated Fe/Mg ratios
would be confined to the Hadean or early Archean, either by the final
solidification of a lowermost mantle magma ocean (Labrosse et al.
2007; Stixrude et al. 2009) or by sinking of solidified igneous rocks
from a melt accumulation zone at 410 km depth (Lee et al. 2010).
Some of the recent and most reliable experimental studies have
confirmed a strong increase in the Fe/Mg ratio in (residual) melts
relative to coexisting bridgmanite, post-bridgmanite, and ferro-
periclase (Tateno et al. 2014; Pradhan et al. 2015). Therefore, the
final magma ocean solidification probably involved a separate
lower domain of dense residual melts crystallizing from the top to
the bottom (Labrosse et al. 2007; Stixrude et al. 2009). Experimen-
tal and theoretical investigations by Liebske and Frost (2012) and
de Koker et al. (2013) of the MgO–SiO2 system indicate that resid-
ual melts and bulk mantle peridotite have similar (Mg + Fe)/Si
ratio. It is therefore likely that the late-stage cumulates will have
similar proportions of bridgmanite and (Mg,Fe)O (ferropericlase
or magnesiowustite) as the bulk mantle. The oxide proportion of
dense primordial cumulates directly above the CMB is expected
to decrease by partitioning of the FeO component into the O-

undersaturated proto-core (e.g., Frost et al. 2010). The associated in-
crease in bridgmanite/oxide and Mg/Fe ratios would have reduced
the density and increased the bulk modulus in the primordial cumu-
late material. This might have enabled an originally very dense layer
covering most of the CMB to segregate into two antipodal thermo-
chemical piles, stabilized near the equator by the Earth’s initial fast
rotation rate.

Simple dynamic and chemical considerations may indicate com-
posite LLSVPs structures comprising lower parts of primordial
Fe-rich peridotites, possibly with bridgmanite/oxide ratio slightly
higher than the bulk lower mantle. Accumulations of primordial
dense cumulates crystallised in the lowermost mantle or emplaced
by sinking from the transition zone (Lee et al. 2010) are unlikely to be
stirred into the mantle by convection. By default, it seems inescap-
able that such material accreted to the LLSVPs during the early his-
tory of the Earth. The model ages of the ROC components of various
plumes also testify to long-term stockpiles of ROC material in the
deep mantle. The inferred lateral D== flow of subducted slab material
from the circumpolar belt to the LLSVP margins seems to exclude
most of the lowermost mantle as long-term (>1 Ga) storage sites. In
spite of the slowly rising mantle above the LLSVPs, the upper parts
of these thermochemical piles seem to be appropriate storage sites
(Fig. 6). Because the high bulk modulus of basaltic ROC material
results in decreasing density contrast with the ambient peridotitic
material with increasing depth, the ROC accumulations will ap-
proach neutral buoyancy near the surfaces of the assumed primor-
dial LLSVP piles. The basaltic material might therefore easily become
entrained into slowly rising mantle flow and then intermittently
sink back against the flow from shallower mantle levels. Such a flow
regime might resemble the unstable flow pattern of a lava lamp.

Criticism: statistical attacks
Needless to say, Burke’s idea that LIPs, kimberlites, and hotspots

are predominantly sourced by deep mantle plumes from the mar-
gins of the LLSVPs (TUZO and JASON) is far from being universally
accepted and has generated a vigorous debate in the geophysical
literature. Among the most fervent opponents have been the repre-
sentatives of the Andersonian movement (www.mantleplumes.org;
Anderson 2005; Anderson and King 2014; Julian et al. 2015), who deny
the very existence of deep mantle plumes, and mantle modellers
disagreeing with the interpretation of LLSVPs as mantle structures
having distinct chemical properties. Several recent papers presented
interesting criticism using statistical arguments (Austermann et al.
2014; Davies et al. 2015; Julian et al. 2015).

From the modelling community, Austermann et al. (2014) and
Davies et al. (2015) suggested that the observed correlation between
the reconstructed LIPs and the margins of TUZO and JASON can be
equally well (or even better) explained by deep plumes forming ran-
domly over the entire area associated with the LLSVPs, rather than by
plumes from their margins. In other words, the observed pattern,
with reconstructed LIPs distributed along the margins and appar-
ently not forming over the interiors of LLSVPs (Fig. 2a), may be just a
chance coincidence due to the random process of plume generation.
Furthermore, they argued that the two alternatives (plumes from the
entire LLSVPs and plumes from the margins) could not be distin-
guished based on a statistical analysis of the observed distribution of
LIPs. This criticism was addressed in the study of Doubrovine et al.
(2016), in which they used a nonparametric approach based on em-
pirical distribution function statistics to test the spatial LIP distribu-
tion. That study showed that although the hypothesis proposing that
LIP-sourcing plumes form randomly over the entire area of the
slower than average shear-wave velocities associated with TUZO and
JASON cannot be ruled out completely, the probability models as-
suming that plumes rise from the LLSVP margins, provide a much
better fit to the LIP data. Hence, we consider it reasonable to prefer
the latter hypothesis.
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An example from the Andersonian movement includes the
study of Julian et al. (2015, p. 105), who suggested that “The supposed
LIP–Hotspot–LLSVP correlations probably are examples of the
Hindsight Heresy”, by which they meant restricting statistical tests
to the data that have been initially used to formulate the hypothesis
being tested. This accusation is not appropriate. The first paper dis-
cussing correlation between hotspots and deep mantle lateral shear-
wave velocity gradients (mainly along the LLSVP margins) was by
Thorne et al. (2004). But since it was not clear which hotspots were
sourced by deep mantle plumes, Torsvik et al. (2006) used recon-
structed LIPs, which is not the same data sample as in Thorne et al.
(2004). A statistical test of the correlation between the LIPs and
LLSVPs was first undertaken by Burke et al. (2008); more recent
studies include Austermann et al. (2014), Davies et al. (2015), and
Doubrovine et al. (2016). Torsvik et al. (2010) performed a statisti-
cal analysis for the distribution of kimberlites, which is yet an-
other data set. In contrast, the distribution of hotspots has not
been the subject of statistical tests in the work of Burke and his
collaborators because it is unclear which hotspots are sourced by
deep mantle plumes, as mentioned above.

The study of Julian et al. (2015) focused entirely on the analysis
of the distribution of present hotspots, criticizing some technical
aspects of the statistical approach used by Burke et al. (2008), which,
according to Julian et al. (2015), led to “inadvertent hindsight effects”
in estimating the significance of the correlation between the LIPs
and LLSVPs. Ironically, even after correcting for these effects, they
arrived at the conclusion that there is a very strong correlation
(99% confidence level) between the hotspots and the margins of
LLSVPs. Thus, regardless of the discussion on whether Burke et al.
(2008) overestimated the confidence levels in their analysis (which is
beyond the scope of this paper), the correlation is real and cannot be
attributed to the heretical thinking of some of the involved parties.
The same is true for the correlations involving LIPs and kimberlites
as was repeatedly shown by, for example, Torsvik et al. (2010),
Austermann et al. (2014), and Doubrovine et al. (2016).

Not being able to dismiss the correlation on statistical grounds,
Julian et al. (2015) nevertheless concluded that it does not mean
anything, because “correlation is not causation” and “these corre-
lations are symptoms of as-yet-unidentified processes”. Since we
have clearly identified the mechanism for causation, i.e., our hy-
pothesis that plumes rising from the margins of TUZO and JASON
lead to the observed correlation, we consider this criticism un-
founded.

Julian et al. (2015) used five catalogues of hotspots compiled by
different authors, with 37 to 72 hotspots in each catalogue. These
catalogues are not independent from each other, but more impor-
tantly, it has been long suspected that many of the hotspots included
in these lists (the majority in fact) may not have deep plume origin.
For instance, Ritsema and Allen (2003) concluded that only eight
hotspots had a possible deep plume origin, based on underlying low
shear-wave velocities in both the upper and lower mantle. With
other criteria, including the presence or not of a volcanic track and a
starting LIP, high 3He/4He, and tomographic evidence, Courtillot
et al. (2003) considered 7 out of 49 hotspots (only 14%) originate from
the deep mantle. We note that all these primary hotspots (Afar, Eas-
ter, Iceland, Hawaii, Louisville, Reunion, and Tristan) are located
above or near the edges of TUZO and JASON (Fig. 7c). Courtillot et al.
(2003) also distinguished between secondary plumes—originating
from the base of the transition zone on the tops of TUZO and JASON
(Fig. 4a)—and a third type of superficial Andersonian hotspot linked
to lithosphere tensile stresses and decompression melting. Montelli
et al. (2006) identified 12 hotspots of possible deep origin from seis-
mic tomography. In a more recent study, French and Romanowicz
(2015) identified 20 primary or clearly resolved plumes in the Earth’s
mantle (Fig. 7c). They also included a third category (somewhat re-
solved) of seven hotspots.

A simple visual comparison of the position of the 20 primary
and clearly resolved hotspots of French and Romanowicz (2015)

with the tomography (Fig. 7c) suggests that most of them are located
near the margins of TUZO and JASON. The exceptions are the Samoa,
Tahiti, and Caroline hotspots, which are located closer to the centre
of JASON (see also Fig. 5). It is also noteworthy that all hotspots
(except Louisville) that are commonly used for plate reconstructions
in a hotspot reference frame, i.e., Hawaii, New England, Reunion,
and Tristan (Fig. 7c), lie directly above the margins of TUZO and
JASON, and not above their centres. The pattern of hotspots is quite
similar to that for reconstructed LIPs (except Columbia River Basalt,
15 Ma) since the Cretaceous (Fig. 7d). However, unlike LIPs, some
hotspot locations tend to be displaced from the PGZ contours toward
the interiors of the LLSVPs, which is most clear for the Pacific hot-
spots.

The Burkian Earth
While physicists are fantasizing about a unified theory that can

explain just about everything from subatomic particles (quantum
mechanics) to the origin of the Universe (general relativity), Darwin
(1859) explained nearly all about life on Earth with one unified vision
(Livio 2013). In Earth Sciences the description of the movement and
deformation of the Earth’s outer layer has evolved from Continental
Drift (1912) into Sea-Floor Spreading (1962) and then to the paradigm
of Plate Tectonics in the mid- to late-1960s. Plate Tectonics is as fun-
damentally unifying to the Earth Sciences as Darwin’s Theory of
Evolution is to Life Sciences, but it is an incomplete theory without a
clear understanding of how plate tectonics and mantle plumes inter-
act, a problem that Burke set out to resolve more than a decade ago
by proposing a simple conceptual model, which we will refer to as
the Burkian Earth.

The Burkian Earth is a simple and stable degree-two planet (Fig. 4c).
TUZO and JASON are thermochemical reservoirs, probably both
denser and hotter in the lowermost parts. The Burkian Earth is dom-
inated by small-scale convection in the upper mantle and circulation
in the lower mantle, which is mostly restricted to sinking slabs and
rising thermochemical plumes and at most sluggish elsewhere. Sub-
duction zones show a predominantly large-scale pattern, especially
the “ring of fire” circling the entire Pacific. Therefore, slabs sinking
all the way to the lowermost mantle also relate to long-wavelength
lower-mantle structure dominated by degree two. Plumes rise verti-
cally (no advection as modelled in Fig. 7c) from the margins of TUZO
and JASON—the PGZs—which Burke would describe as loci of an
intermittent or continuous upward flux of hot and buoyant ma-
terial from the CMB. On the surface, this flux is witnessed by the
catastrophic emplacement of LIPs (contributing to biotic extinc-
tion events) and volumetrically lesser kimberlites and hotspot
volcanoes, of which a few lie on tracks departing from LIPs.

On Burke’s planet, all LIPs and kimberlites are sourced by plumes
from the PGZs at the CMB, but based on global tomography models
there are exceptions such as the 15 Myr Columbia River Basalt and
Cretaceous–Tertiarykimberlites innorthwestAmerica.Additionally,no
hotspots in this region or in nearby offshore areas (e.g., Yellowstone,
Raton, Bowie, and Cobb hotspots in Fig. 7c) have been classified as
deep plumes. There are, however, published S–SKS models (Castle
et al. 2000; Kuo et al. 2000) that do show low-velocity areas at the
CMB beneath the Columbia River Basalts and surrounding areas, and
also in some other regions, such that with the choice of particular
tomography models, many more plumes can be fitted nearly verti-
cally above a PGZ. However, those features do not show up in some
other tomography models. French and Romanowicz (2015) do not
image low-velocity regions at the CMB vertically below Yellowstone,
although they do see a small low-velocity region (Fig. 7a) approxi-
mately centred beneath Las Vegas, about 1000 km towards the south-
west. Schmandt et al. (2012) find an upward deflection of the 660 km
discontinuity beneath Yellowstone and low-seismic velocities in the
mantle between 660 and �900 km depth, displaced about 200 km to
the southwest, both suggesting a lower-mantle origin of the Yellow-
stone plume. Their results give no hint of a plume conduit at greater
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Fig. 7. (a, b) 2-D cross-sections (parts of the cross-sections are shown in (c)) of shear-wave velocity anomalies across the Hawaii and Iceland
hotspots. Broad plumes beneath Hawaii and Iceland extend continuously from the core–mantle boundary (CMB) to the uppermost mantle. On
the other hand, anomalies are not readily detected in the lower mantle beneath the Yellowstone and Eifel hotspots (French and Romanowicz
2015). (c) Distribution of hotspots (Steinberger 2000) and their calculated surface hotspot motion (Doubrovine et al. 2012) draped on the
s10mean shear-wave velocity anomaly model at 2800 km depth (Doubrovine et al. 2016). The s10mean 0.9% slow (thick red line; the plume
generation zone in this model) and zero (black line) contours are shown. Velocity anomalies (�Vs) are in percent and red denotes regions with
low velocity. Many hotspots appear to overly regions of slower than average shear-wave velocities (notably those associated with TUZO), but
there are clear exceptions (e.g., Yellowstone in North America). Twenty hotspots thought to be sourced by deep plumes from the CMB
(primary and clearly resolved plumes in French and Romanowicz 2015) are shown as large white or black (also identified by Courtillot et al.
2003) circles with red filling. Others of unknown origin are shown as smaller circles with yellow fillings. (d) As in (c) but only plotting 20 hotspots
classified as primary or clearly resolved plumes by French and Romanowicz (2015) and compared with large igneous provinces (LIPs, squared red
boxes with numbers in Myrs) that have been reconstructed from a global moving hotspot frame (maximum age of 125 Ma for those associated with
TUZO) and a fixed Pacific hotspot frame from 83–150 Ma (Doubrovine et al. 2012). [Colour online.]
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depth, but numerical models of plumes deflected in large-scale man-
tle flow predict that a plume source in the lowermost mantle should
be displaced about 500–1000 km to the southwest (Steinberger 2000)
in a similar region to where French and Romanowicz (2015) image
low seismic velocities.

The Burkian Earth is very different from the Andersonian Earth
(Fig. 4b), where slabs are often halted by the 660 km discontinuity
and only punch through after sufficient accumulation, plumes do
not exist, and hotspot volcanism is only linked to lithosphere tensile
stresses, cracking, and decompression melting. Whole mantle to-
mography (Figs. 7a, 7b), the similarity between reconstructions based
on hotspot locations and palaeomagnetism, and the locations of LIPs
and kimberlites in relation to the tomography of the lowermost
mantle (TUZO and JASON) are clearly at odds with such a planet.
Many hotspots, however, could be of the Andersonian type. Interest-
ingly, the Andersonian Earth includes ancient low-velocity regions in
the deepest mantle (Fig. 4b), which are comparable with TUZO and
JASON. On the Burkian Earth these are primordial thermochemical
piles that possibly formed during early magma ocean crystallization
(or shortly afterward), perhaps by magmatic segregations of Fe-rich
peridotitic or komatiitic materials.

It is still unclear, though, why lower-mantle structures similar
to today would already have existed back in the Hadean. If, as
envisioned by Burke, only slabs are going down and plumes are
coming up—and nothing else moves—it may be easier to also keep
piles stable where they are. But even in this case, piles might be
disrupted if subduction occurs directly above them. So is it possible
that piles survive that? Or is there a mechanism to keep subduction
zones away from piles? Could large-scale upwellings act as mantle
anchor structures (Dziewonski et al. 2010) that also control where
downward flow and subduction occurs? An indication of that could
be the net characteristics of plate tectonics, which reveal that active
mantle upwellings have been stable since 250 Ma, whereas the re-
gions where most subduction occurs have been more mobile
(Conrad et al. 2013). Or could it be that subduction keeps itself in
place (Baes and Sobolev 2014)? All these are open questions, and at
the moment we do not even know with certainty whether thermo-
chemical piles were spatially stable for much longer than 300 Myr.
We can only say that their stability is consistent with data, but it is
not necessarily required, due to uncertainties in longitude of conti-
nents (Torsvik et al. 2014). Burke’s provoking ideas have clearly been,
and will continue to be, a source of inspiration for the studies that
shed light on these questions.
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